Part Number Hot Search : 
X18XX AN79M12F FAN5094 74HC5 221M25V8 4C05N EE08460 RVF25
Product Description
Full Text Search
 

To Download STA001 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 STA001
RF FRONT-END FOR DIGITAL RADIO
PRODUCT PREVIEW
s s s s s s s s s s s s
SINGLE CHIP RECEIVER FOR SATELLITE DIGITAL TRANSMISSION SUPERHETERODYNE RECEIVER WITH IF OUTPUT HIGH INPUT INTERCEPT POINT, LOW MIXER NOISE 54dB IF VGA GAIN RANGE ADJUSTABLE RF GAIN ADJUSTABLE IF GAIN INTEGRATED RF VCO INTEGRATED IF VCO INTEGRATED SYNTHESIZER I2CBUS COMPATIBLE PROGRAMMING INTERFACE UNREGULATED 2.7 V TO 3.3V VOLTAGE SUPPLY LOW COST EXTERNAL COMPONENTS
DESCRIPTION
The STA001 is an RF IC using STMicroelectronics
BLOCK DIAGRAM
PADJ1, PADJ2 VDD1 SUPPLY1 :RF VSS1 LNI, NLNI LNA
FLT1
TK 1, NTK1
w
w
w
VCO
t a .D
CE RF MIXER
CHARGE PUMP :363.625- 373.75
S a
IF1 BUFFER
e h
AGC1, AGC2 VGA
HSB2 High Speed Bipolar Technology for one chip solution for the Starman digital satellite radio receiver.
The STA001 is assembled in a TQFP44 package. The frontend architecture is a double conversion receiver (see block diagram) . The chip includes all the RF functions up to low IF and manages the signals to and from the baseband.
U t4 e
GADJ1, GADJ2
TQFP44 ORDERING NUMBER: STA001
.c
m o
SIP, SIN
SOP, SON
SUPPLY4 :IF1, IF2 &PLL2 IF1 to IF2 MIXER IF2 BUFFER
VDD4 VSS4 RXI, NRXI 1.8366 Mhz FLT2 TK2, NTK2
1338.14 - 1375.4 MHz
117.0806 MHz
113.23KHz 1st PLL 3.68MHz
PHASE DETECTOR PHASE DETECTOR
CHARGE PUMP
VCO
: 1034
DIFFERENTIAL SINGLE ENDED
ENRFOSC
LOCK DETECTOR
:130 :4
2nd PLL
TLCK
14.72MHz
BUFFER
M_CLK
VDD2 VSS2
SUPPLY2 :PLL1 + Crystal osc .
MUX I2CBUS INTERFACE
OSC
SUPPLY3 :DIG.
CHANNEL SELECTION SDA SCL XOSEL REF
XTAL1, XT AL2
November 2002
This is preliminary information on a new product now in development. Details are subject to change without notice.
w
w
w
.D
a
aS t
ee h
VDD3 VSS3
4U t
om .c
1/20
STA001
PIN CONNECTION (Top view)
AGC1 AGC2 VDD4 VDD4 VSS4 VSS4 NTK2 FLT2 SON SOP TK2
44 43 42 41 40 39 38 37 36 35 34
VDD1 SIP SIN VSS1 LNI NLNI VSS1 N.C. PADJ1 PADJ2 ENRFOSC
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
33 32 31 30 29 28 27 26 25 24 23
RXI NRXI GADJ1 GADJ2 CE VDD3 SCL SDA VSS3 M_CLK1 M_CLK2
VDD2
NTK1
VDD2
XTAL1
XTAL2
XOSEL
TK1
FLT1
VSS2
REF
TLCK
D97AU602
PIN FUNCTION
N 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 Pin VDD1 SIP SIN VSS1 LNI NLNI VSS1 NC PADJ1 PADJ2 Positive supply 1 SAW filter input connection SAW filter input connection Negative supply 1 RF input RF input Negative supply 1 Not connected RF gain adjust connection 1 RF gain adjust connection 2 Function
ENRFOSC RF Oscillator enable VDD2 TK1 NTK1 VDD2 FLT1 VSS2 XTAL1 XTAL2 REF XOSEL TLCK Positive supply 2 1st PLL tank connection 1 1st PLL tank connection 2 Positive supply 2 1st PLL loop filter connection Negative supply 2 Quartz oscillator connection 1 Quartz oscillator connection 2 External optional TCXO input Internal/external XO selection Lock detector output
2/20
STA001
PIN FUNCTION (continued)
N 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 Pin M_CLK2 M_CLK1 VSS3 SDA SCL VDD3 CE GADJ2 GADJ1 NRXI RXI FLT2 VDD4 TK2 NTK2 VDD4 AGC2 AGC1 VSS4 SON SOP VSS4 Master clock differential output 1 Master clock differential output 2 Negative supply 3 Data serial input Clock input Positive supply 3 Chip Enable IF gain adjust connection 2 IF gain adjust connection 1 Low IF Signal output 2 Low IF Signal output 1 2nd PLL loop filter connection Positive supply 4 2nd PLL tank connection 2nd PLL tank connection Positive supply 4 VGA control pin 2 VGA control pin 1 Negative supply 4 SAW filter output connection SAW filter output connection Negative supply 4 Function
ABSOLUTE MAXIMUM RATINGS
Symbol Tstg Toper Vmax Vmin Vmaxi VDDmax Vesd Storage temperature Operative ambient temperature Parameter Value -40 , +125 -20 , +85 VDD+0.3 GND-0.3 VDD+0.6 -0.3/5.5 2 Unit C C V V V V KV
Maximum voltage on any pin (with the exception of CE, SDA, SDL)
Minimum voltage on any pin Maximum voltage on pins CE, SDA, SDL Minimum/Maximum power supply between VDD1,2,3,4 and VSS1,2,3,4 Electrostatic Discharge Voltage (ESD)
OPERATING CONDITIONS
Symbol VDD Tjun Operating voltage Junction temperature Parameter Value 2.7, 3.3 -30, +95 Unit V C
3/20
STA001
THERMAL DATA
Symbol Parameter Value 45 Unit C/W
R Th j-amb Thermal Resistance Junction to Ambient (1)
(1) According to JEDEC specification on a 4 layers board
ELECTRICAL CHARACTERISTCS
Symbol Parameter Test Conditi on Min. Typ. Max. Unit
SUPPLY CURRENTS (Tamb = 25, VDD = 3V) ICC1 ICC2 Current supplied by VDD1 Current supplied by VDD2 Powered circuits: LNA, RF mixer, IF buffer Powered circuits: RF pll, Crystal Oscillator. ENRFOSC=high (IC RF Osc. Enabled), XOSEL=high (IC XO Enabled) ENRFOSC=low (IC RF Osc. Disabled), XOSEL=high (IC XO Enabled) ENRFOSC=high (IC RF Osc. Enabled), XOSEL=low (IC XO Disabled) ENRFOSC=low (IC RF Osc. Disabled), XOSEL=low (IC XO Disabled) ICC3 ICC4 Current supplied by VDD3 Current supplied by VDD4 ICC1+ ICC2+ ICC3+ ICC4 Powered circuits: Digital cells Powered circuits: VGA, IF mixer, output buffer, IF pll. V(AGC1)=V(AGC2)=1.2 (IFgain=75dB) ENRFOSC=high (IC RF Osc. Enabled), XOSEL=high (IC XO Enabled) ENRFOSC=low (IC RF Osc. Disabled), XOSEL=high (IC XO Enabled) ENRFOSC=high (IC RF Osc. Enabled), XOSEL=low (IC XO Disabled) ENRFOSC=low (IC RF Osc. Disabled), XOSEL=low (IC XO Disabled) ITOTSB Standby ICC1+ ICC2+ ICC3+ ICC4 CE=GND 9.5 14 17 mA
8.5
10
12
mA
3
5
6
mA
7.5
9
11
mA
2 12 7
4 15 11
5 18 14
mA mA mA
ITOT
40
50
61
mA
34
45
55
mA
39
49
60
mA
34
44
54 100
mA A
LNA, RF MIXER AND IF1 BUFFER (T = 25, VDD-VSS = 3V) BWi BWo GV Input signal BW Output signal BW Voltage Gain Input LNI, NLNI pins; output SIP, NIP pins. RL = 200, PADJ1, PADJ2 floating 1452 114 28 30 1492 116.5 33 MHz MHz dB
4/20
STA001
ELECTRICAL CHARACTERISTCS (continued)
Symbol GVtrim Zi Zo Rl IIP3 IIP3trim 1dBcp 1dBcptri
m
Parameter Minimum Voltage Gain Input impedance R || C Output impedance Input Return Loss Input IP3 Input IP3 minimum gain Input 1 dB compression point Input 1 dB compression point Noise figure contribution
Test Conditi on Input LNI, NLNI pins; output SIP, NIP pins. RL = 200, R ext=0 Balanced, LNI, NLNI pins Balanced, SIP, SIN pins LNI, NLNI pins Input LNI, NLNI pins; output SIP, NIP pins, Rl=200, PADJ1, PADJ2 floating Input LNI, NLNI pins; output SIP, NIP pins, Rl=200, R ext=0 on PADJ1, PADJ2 Input LNI, NLNI pins; output SIP, NIP pins, Rl=200, PADJ1, PADJ2 floating Input LNI, NLNI pins; output SIP, NIP pins, Rl=200, PADJ1, PADJ2 Rext=0 on PADJ1, PADJ2 Measurement conditions: Input LNI, NLNI pins; output SIP, NIP pins. R s=50, Rl=200, DSB, PADJ1, PADJ2 floating Measurement conditions: Input LNI, NLNI pins; output SIP, NIP pins. R s=50, Rl=200, DSB, Rext=0 on PADJ1, PADJ2
Min. 22
Typ. 25 75 0.2 50 14
Max. 28
Unit dB pF dB
-20 -19.5 -26 -24
-15 -11.5
dBm dBm dBm dBm
NF
5
dB
NFtrim
Noise figure contribution minimum gain
6.5
dB
IF1leak RFleak VDC VDC
LO1 to IF1 leakage LO1 to RF leakage LNI, NLNI common mode AC coupled to the Balun DC voltage SIP, SIN common mode DC voltage AC coupled to the SAW filter
-100 -100 VDD1.2 VDD1.3 V DD-1 VDD1.1
-25 -30 VDD0.8 VDD0.9
dBm dBm V V
IF VGA AMPLIFIER, IF MIXER AND OUTPUT BUFFER (T = 25, VDD-VSS = 3V) BWi BWo Gmin Gmax IAGC ZAGC Input signal BW Output signal BW Minimum gain Maximum gain Input current in AGC control pin AGC pin input impedance Input LNI, NLNI pins; output SIP, NIP pins. Rl=high impedance V(AGC1,2)=0V Input LNI, NLNI pins; output SIP, NIP pins. Rl=high impedance V(AGC1,2)=3V 71 114 0.6 32 86 10 600 116.5 3.1 37 MHz MHz dB dB A K
5/20
STA001
ELECTRICAL CHARACTERISTCS (continued)
Symbol NF Parameter Noise figure contribution Test Conditi on Measurement conditions: Input SIP, NIP pins; output SOP, NOP pins. Rs=50, Rl=200, DSB, Gain = 65dB Gain = 65dB Gain = 81dB Gain = 65dB Gain = 81dB Balanced, SOP, SON pins Balanced, RXI, NRXI pins (see fig. 9) AC coupled to the SAW filter VDD1.2 VDD2.1 VDD0.15 Balanced, GADJ1, GADJ2 pins Obtained using low pass filter at the output Obtained with SAW filter connected to IF port Vout=1VDDp -100 -30 VDD0.12 800 -45 -30 Min. Typ. 9 Max. Unit dB
1dBcp 1dBcpfg IIP3 IIP3fg Zin Zout VDC VDC VDC Zadj BBleak IF2leak IM3
Input 1 dB compression point Input 1 dB compression point full gain Input IP3 Input IP3 full gain Input impedance Output impedance SOP, SON common mode DC voltage RXI, NRXI common mode DC voltage GADJ1, GADJ2 common mode DC voltage Gain adjustment pins impedance LO2 to BB leakage LO2 to IF2 leakage Third order IM product
-50 -66 -41 -57 50 200 V DD-1 VDD0.8 VDD1.36 VDD
dBm dBm dBm dBm V V V dBm dBm dBc
Figure 1. Typical IF Overall Gain vs Control Voltage
IF TOTAL VOLTAGE GAIN (dB)
input SOP,NOP output RXI,NRXI
IF TOTAL VOLTAGE GAIN (dB)
input SOP,NOP output RXI,NRXI
60
90
IF TOTAL VOLTAGE GAIN (dB)
55
IF TOTAL VOLTAGE GAIN (dB)
85
50
IF gain (dB)
80
IF gain (dB)
45
75
40
70
65 35 60 30 0.7 0.75 0.77 0.79 0.8 0.82 0.84 0.86 0.88 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7
V(AGC1, AGC2) (Volt)
V(AGC1, AGC2) (Volt)
6/20
STA001
ELECTRICAL CHARACTERISTCS (continued)
Symbol Parameter Test Condition Min. Typ. Max. Unit
CRYSTAL OSCILLATOR (T = 25, VDD-VSS = 3V) VDC XTAL1, XTAL2 common mode DC voltage XOSEL high VDD1.1 VDD0.68 V
PLLs, SYNTHESIZERS (T = 25, VDD-VSS = 3V) ts Pn fREF1 fREF2 P SP Nprog1 RF pll loop settling time Total phase noise contribution RF pll comparation frequency IF pll comparation frequency Spurious power level*** RF pll, fc=n*460KHz n=1,2.. IF pll, fc=113.23KHz from REF1 to LO1, range covered by a 0.5 step, using a 14.72MHz quartz -100 1443 (first used 1454.5) 1443 (first used 1454) 987 1034 4 130 within 1 KHz final freq. Offset, by using the loop filter of Application board 100Hz < f < 1.84Mhz, Qrf_tank20, Qif_tank20 1 1.6 ms degrms MHz KHz dBc dBc
3.68 113.23 -50 -45 1506.5 (last used 1495) 1506.5 (last used 1494.5) 1081
RF PLL selectable division ratios
Nprog2
RF PLL selectable division ratios
from REF1 to LO1, range covered by a 0.5 step, using a 14.725MHz quartz
N fix NREF1 NREF2
IF PLL fixed division ratios from REF2 to LO2, 1 fixed +2 testing values
REF1 division ratio REF2 division ratio from Crystal oscillator to REF1 from Crystal oscillator to REF2
*** Using loop filter as suggested in application board schematics
RF VCO (T = 25, VDD-VSS = 3V) fLO1_1 fLO1_2 VFLT1 VDC Zi LO Freq. range LO Freq. range Using 14.72Mhz quartz Using 14.725Mhz quartz Pin FLT1
1338.14
1375.4
MHz MHz V
1338.134375 to 1375.407031 VSS + 0.2
Freq. control voltage range
TK1, NTK1 DC voltage
VDD 0.2
ENRFOSC high
VDD1.3
VDD1.1 300 0.2
VDD0.65
V pF
Input impedance R || C
Balanced, TK1, NTK1 pins
7/20
STA001
ELECTRICAL CHARACTERISTCS (continued)
Symbol Parameter Test Condition Min. Typ. Max. Unit
IF VCO (T = 25, VDD-VSS = 3V) fLO2_1 LO Freq. Using a 14.72MHz quartz, Min. and Max. Values are optional fixed frequency usable for testing purposes. Using a 14.725MHz quartz, Min. and Max. Values are optional fixed frequency usable for testing purposes. FLT2 pin 111.76 117.08 122.4 MHz
fLO2_2
LO Freq.
111.8
117.12
122.44
MHz
VFLT2
Freq. control voltage range
VSS + 0.2
VDD 0.2
V
DIGITAL INTERFACE TO MP (SCL, SDA, TLCK) AND XOSEL INTERFACE (T = 25, VDD-VSS = 3V) INPUT PARAMETERS (SCL, SDA) V IH VIL IIH IIL Tt R in Input current High Input current Low Input edge transition Input resistance digital input signals high low VDD-1 VSS 10 -40 0.1 190K VDD VSS+0. 7 V V A A s/V
OUTPUT PARAMETERS (TLCK) VOH V OL tr tf Rise time Fall time digital output signals high VDD0.5 VSS 0.4 0.4 VDD V
low
VSS+0. 5
V s/V s/V
Cl=5pF Cl=5pF
DIFFERENTIAL DIGITAL INTERFACE (M_CLK1, M_CLK2) (T = 25, VDD-VSS = 3V) VOH V OL VDC tr tf Zout digital output signals, V(M_CLK1) V(M_CLK2) M_CLK1, M_CLK2 common mode DC voltage Rise time Fall time Output impedance Cl=5pF each pin Cl=5pF each pin balanced high low VDD1.12 10 10 500 0.2 -0.2 VDD0.7 V V V
ns ns
8/20
STA001
ELECTRICAL CHARACTERISTCS (continued)
Symbol fM_CLK1 fM_CLK2 Parameter M_CLK frequency M_CLK frequency Test Condition Using a 14.72MHz quartz Using a 14.725MHz quartz Min. Typ. 14.72 14.725 Max. Unit MHz MHz
ADDITIONAL DIGITAL INTERFACE (CE) (T = 25, VDD-VSS = 3V) (LOW=GND, HIGH=VDD) V IH VIL tr tf CE power up time CE power down time digital input signals high
VSS+1. 8 VSS+1. 3
2 6
V
low
V s s
XOSEL, CE, TLCK, ENRFOSC TRUTH TABLE (LOW = GND, HIGH = VDD) Pin CE input Type high low XOSEL input high low ENRFOSC input high low TLCK output high low Level Chip enabled Chip disabled Internal Crystal oscillator selected External TCXO connected on REF selected Internal RF oscillator selected External RF oscillator connected on TK1, NTK1 pins Synth. locked Synth. unlocked Result
ADDITIONAL OPTIONAL INTERFACE INFORMATION (REF) Symbol VDC R in Parameter REF DC voltage XOSEL low Test Condition Min. VDD1.1 Typ. VDD0.9 70K Max. VDD0.7 Unit V
Input resistance
XOSEL low
9/20
STA001
FUNCTIONAL DESCRIPTION Receiver chain
The receiver chain transforms the RF frequency signals to an IF signal at 1.84 MHz Carrier directly usable by the Channel decoder. In front of the STA001 IC it can be placed an external LNA and a bandpass filter; the bandpass filter limitates the input bandwidth and guarantees a suitable rejection to the image frequency. The STA001 input stage is a LNA working in the 1452-1492 MHz band. The RF signal is downconverted, using an active mixer, to a first IF of 115.244 MHz. The first LO is tunable with a frequency step of 460 KHz. The RF can be reduced 5dB by an external trimmer/resistor connected between PADJ1 and PADJ2 pins. An IF variable gain amplifier guarantees 54 dB typical of gain range. Using pins GADJ1, GADJ2, the output RX signal level can be decreased to the desired value by an external trimmer/resistor. Moreover, the IF chain can be configured to have a fixed gain by fixing statically control voltages on AGC1 and AGC2 pins (i.e. V(AGC1)=VCC and V(AGC2)=GND), and by trimming the gain through connecting an external resistor between GADJ1 and GADJ2. By using an 800 Ohm resistor connected between GADJ1 and GADJ2, for example, a typical 56 dBs IF static gain is obtained. The first IF signal, having a bandwidth of 2.5 MHz, shaped by an external SAW filter, is downconverted to a second IF of 1.84 MHz. A differential clock output at 14.72 MHz is available to be used from the baseband.
Synthesizers, PLL, charge pump and VCOs
The first Voltage controlled Oscillator is controlled by an integrated PLL and it's able to cover a frequency range of 37MHz with a step size of 460 KHz. The second Voltage controlled oscillator produces a fixed 117.08MHz frequency controlled by a second integrated PLL. Moreover, the 2nd PLL is able to select 2 other fixed frequencies, i.e. 111.76MHz and 122.4MHz, suitable for application test. The other components of the first PLL synthesizer are a low frequency programmable divider and a dual modulus prescaler; a fixed dividers is instead used to synthesize the second VCO frequency. Other fixed internal dividers are used to get the comparation frequencies of both loops. Channel selection is made through the I2CBUS interface , directly from the P.
POWER SUPPLIES
The chip operates from an unregulated power supply of 2.7 to 3.3 Volts. All interface circuits to the baseband chips are operating between these supplies unless otherwise specified.
INTERFACE SPECIFICATION
All the interface voltage levels to the micro controller are referenced to the supply voltage of the interface power supply (GND) . The interface voltage levels are therefore fully compatible with the base band circuits. The digital levels are all CMOS threshold compatible with the exception of M_CLK1, M_CLK2 pins (ECL type). For completeness all other interface signals are also included.
I2C BUS INTERFACE
Data transmission from microprocessor to the STA001 takes place through the 2 wires I2C BUS interface, consisting of the two lines SDA and SCL (pull-up resistors to positive supply voltage must be connected to SDA and SCL).
10/20
STA001
Data Validity
The data on the SDA line must be stable during the high period of the clock. The HIGH to LOW state of the data line can only change when the clock signal on the SCL line is LOW.
Start and Stop conditions
A start condition is a HIGH to LOW transition of the SDA line while SCL is HIGH. The stop condition is a LOW to HIGH transition of the SDA line while SCL is HIGH.
Byte format
Every byte transferred on the SDA line must contains bits. Each byte must be followed by an acknowledge bit. The MSB is transferred first.
Acknowledge
The master (P) puts a resistive HIGH level on the SDA line during the acknowledge clock pulse. The peripheral (STA001) that acknowledges has to pull-down (LOW) the SDA line during the clock pulse. The STA001 which has been addressed has to generate an acknowledge after the reception of each byte, otherwise the SDA line remains at at the HIGH level during the ninth clock pulse time. In this case the P can generate the STOP information in order to abort the transfer.
Transmission without acknwoledge
Avoiding to detect the acknowlegde of the STA001, the P can use a simpler transmission: simply it waits one clock period without checking the STA001 acknowledging, and sends the new data. This approach of course is less protected from misworking.
Figure 2. Validity on the I2CBUS
SDA
SCL DATA LINE STABLE, DATA VALID CHANGE DATA ALLOWED
D99AU1031
Figure 3. Timing Diagram of the I2CBUS
SCL I2CBUS SDA
D99AU1032
START
STOP
11/20
STA001
Figure 4. Acknowledge on the I2CBUS
SCL
1
2
3
7
8
9
SDA MSB START
D99AU1033
ACKNOWLEDGMENT FROM RECEIVER
TIMING SPECIFICATION
Figure 5. Data and clock
SDA SCL
tcwl tcs
Symbol tcs tch tcwh t cwl
tch
tcwh
Minimum time (ns) 100 50 100 100
Parameter Data to clock set up time Data to clock hold time Clock pulse width high Clock pulse width low
Figure 6. Start and stop
SDA SCL
tstart1 tstart2
tstop2tstop1
Symbol Tstart1,2 Tstop1,2
Parameter Clock to data start time Data to clock down stop time
Minimum time (ns) 100 100
12/20
STA001
Figure 7.
SDA SCL 8 9
td2
td1
Symbol td1 td2 Ack begin delay Ack end delay
Parameter
Maximum time (ns) 200 200
SOFTWARE SPECIFICATION Interface protocol
The interface protocol comprises: - A start condition (S) - A chip address byte - A two data bytes - A stop condition (P)
MSB chip address LSB MSB 1st data byte LSB MSB 2nd data byte LSB
S
1
1
0
0
0
0
0
0 ack 1 D6 D5 D4 D3 D2 D1 D0 ack 0 D6 D5 D4 D3 D2 D1 D0 ack P
ack = Acknowledge S = Start P = Stop
"Byte by byte" option
A "byte by byte" programming mode is also possible when there is no need to use both data bytes to program the chip (for example during the setup of 2nd PLL). To use this feature remember that first bit of both data bytes is reserved to chose the destination of the remaining 7 bits.
MSB chip address LSB MSB 1st data byte LSB
S
1
1
0
0
0
0
0
0
ack
K
D6
D5
D4
D3
D2
D1
D0
ack
P
ack = Acknowledge S = Start
13/20
STA001
P = Stop K= destination of the remaining 7bit: K=1 the data byte has the same function of the 1st data byte in the normal programming mode. K=0 the data byte has the same function of the 2nd data byte in the normal programming mode.
Table 1. First data byte selection table (selection of synthesizer channel) using a 14.72Mhz quartz
MSB LSB RF LO freq. selected Units Division ratio selected on synthesizer from REF1 to LO1 1324.8+6*0.46 (1327.56) 1324.8+7*0.46 1324.8 + 8*0.46 MHz MHz MHz 360.75 360.875 361 Lowest selectable freq. Notes
D6 0 0 0 0 -
D5 0 0 0 0 -
D4 0 0 0 1 -
D3 0 0 1 1 -
D2 1 1 0 1 -
D1 1 1 0 0 -
D0 0 1 0 1 1338.14 1324.8 + N*0.46 N=(D6..D0) represented decimal number 1375.4 MHz MHz
363.625 360 + N*0.125
first used freq. general freq. generation rule
1 1 0 0 1
1 1 0 0 0
0 1 0 0 0
1 1 0 0 0
1 1 0 1 1
1 1 0 0 0
0 1 0 1 1
MHz
373.75
Last used freq.
1383.22 1383.68
MHz MHz
375.875 376
1324.8+133*0.46 (1385.98) 1356.54
MHz MHz
376.625 368.625
Highest selectable freq. Startup presetted data
14/20
STA001
Table 2. First data byte selection table (selection of synthesizer channel) using a 14.725Mhz quartz
MSB D6 0 D5 0 D4 0 D3 0 D2 1 D1 1 LSB D0 0 1325.25 +6*0.46015625 (1328.010938) 1325.25 +7*0.46015625 1325.25+ 8*0.46015625 MHz RF LO freq. selected Units Division ratio selected on synthesizer from REF1 to LO1 360.75 Lowest selectable freq. Notes
0 0 0 -
0 0 0 -
0 0 1 -
0 1 1 -
1 0 1 -
1 0 0 -
1 0 0 -
MHz MHz
360.875 361
1338.134375 1325.25+ N*0.46015625 N=(D6..D0) represented decimal number 1375.407031
MHz MHz
363.5 360 + N*0.125
first used freq. general freq. generation rule Last used freq.
1 1 1 0
1 1 1 0
0 1 1 0
1 1 1 0
1 1 1 1
0 1 1 0
1 0 1 1
MHz
373.625
1383.229688 1383.689844
MHz MHz
375.75 375.875
1325.25 +133*0.46015625 (1386.450781) 1357.000781
MHz
376.625
Highest selectable freq. Startup presetted data
1
0
0
0
1
0
1
MHz
368.625
Table 3. Second data byte selection table (LOCK test on both pll, dividers test and IF pll test)
MSB D6 0 0 0 0 0 0 0 1 1 D5 0 0 0 0 0 0 0 0 1 D4 0 0 0 1 1 1 1 0 0 D3 0 0 0 0 1 0 1 0 0 D2 0 1 0 0 0 1 1 0 0 D1 0 0 0 1 1 1 1 0 0 LSB D0 0 0 1 0 0 0 0 0 0 Working mode Lock test on RF pll Lock test on IF pll Lock test on RF and IF pll First pll programmable divider test First pll reference divider test Second pll fixed divider test Second pll reference divider test Test frequency on IF pll divider by 1034 Test frequency on IF pll divider by 1034 Notes lock flag to be tested: TLCK; Startup presetted data lock flag to be tested: TLCK lock flag to be tested: TLCK output freq. divided by 16 available on TLCK output freq. divided by 8 available on TLCK output freq. divided by 2 available on TLCK output freq. available on TLCK Division ratio changed to 987 Division ratio changed to 1081
15/20
2
2
5 C10 U1 VN4 SOP SON VN4 AGC1 AGC2 VP4 NTK2 TK2 VP4 FLT2 C11 220nF 44 43 42 41 40 39 38 38 38 37 37 37 36 36 36 35 34 34 34 1nF
6
VP4a
1:4
2 2
NEOSID 553210
2 2 2
2
VP2 TK1 NTK1 VP2 FLT1 VN2 XTAL1 XTAL2 REF XOSEL TLCK
JUMPER2 VP2a L4 1nH VP2b
12 13 14 15 16 17 18 19 19 19 20 21 22
+ C37 8pF L5 1nH
C33 100pF
C31 10uF
R17 50
C34 8pF
C35 1nF
C36 100nF
VCC
C39 100pF
VCC
NOTE: Connect a resistor from10K to 100K between pins PADJ1 (9) and PADJ2 (10) so to obtain intermediate gain between 25 and 30dB
C41 100pF
2
16/20
VCC R1 AGC2 T1 1 D1 D2 VCC C4 AGC1 330pF 100K C6 100nF T2 1 C8 C9 220nF 4 VP4b 1 1nF 2 R6 18 k J3 C7 3.3 nF 5.6 K R5 C5 1nF R4 MA372J MA372J 4 5 6 2 C2 1nF C3 100nF R2 100K 680pF L1 68nH C1 L2 68nH
STA001
J1
IF2 IN
1
SMA
R3 50
1:1
NEOSID 553200
J2
IF1 OUT
1
SMA
R7 50
RXI OUT
SMA
SMA 1 J4
NRXI OUT
CE R8 R9 1K
VP1 T3 1 STA001 VP3 4 R10 5 LDB20C500A1500 JP1 VCC 1 3 2 4 6 C14 8pF 2 C13 8pF
Figure 8. Test Board Schematic Diagram
J5
C12
RF IN
1
SMA
TEST AND APPLICATION BOARD SCHEMATIC
L3
SCL SDA R11 4.7K R12 4.7K
C15 10nF
1:1
1 2 3 4 5 6 7 8 9 10 11 VP1 SIP SIN VN1 LNI NLNI VN1 NC PADJ1 PADJ2 ENRFOSC RXI NRXI GADJ1 GADJ2 CE VP3 SCL SDA VN3 M_CLK1 M_CLK2
33 32 31 30 29 28 27 26 25 24 23
VCC
C16 10nF CLK1
VCC C17 8pF R13 1K
C19 100pF
C20 10nF CLK2 T_LOCK JP2 R14 0 C24 15nF C30 C29 150nF CRYSTAL R15 390 C23 1 3 C27 Y1 C28 10nF 1 SMA J6 2 4 VCC
VCC D3 HVU355
C22 100pF
VCC D4 VCC HVU355 R16 1K
C26 100pF
VCC
R1 AGC VCC 18 17 16 15 14 14 14 13 13 13 12 12 12 11 10 10K U1 L1 68nH C1 680pF D1 D2 VCC C2 100nF MA2S372 MA2S372 330pF 5.6 K C4 3.3 nF R3 18 k J1 VP4a 33 VN4 SOP SON VN4 VN4 VN4 AGC1 AGC1 AGC1 AGC2 AGC2 AGC2 VP4 VP4 VP4 NTK2 TK2 VP4 FLT2 22p C8 U2 2 2 2 44 44 44 43 42 41 40 39 38 37 36 35 34 C7 150nF 1 SMA VP4b R4 R2 C3 L2 68nH
100nH VCC
C5 100p
1 2 3 4 5 5 5 6 6 6 7 7 7 8 9
GND NC NC GND GND GND OUT OUT GND
L3
GND IN IN GND GND GND NC NC GND S+M Y012B
C6 10n
RXI O
VP1 R5 33K 1 STA001 VCC C15 Q1 2.2p L7 2SC5096 5 6 C16 VCC VP2 TK1 NTK1 VP2 VP2 VP2 FLT1 FLT1 FLT1 VN2 VN2 VN2 XTAL1 XTAL1 XTAL1 XTAL2 REF XOSEL TLCK 8pF 4 T1 2 C14 8pF L4 56nH
2 2 2 C9 150nF
SMA 1 J2
J3 I 100p 1 GND GND GND GND 3 O 4 C12 C13 6.8p
C10
C11
S+M B69813-N1477-A840
NRX
RF IN
1
3
5p
VP3 SCL SDA
SMA
100p
2
L6 7.5nH
1:1
1 2 5 6
L5 100nH U3 2 L8 6.8nH LDB20C500A1500
1 2 3 4 5 6 7 8 9 10 11 VP1 SIP SIN VN1 LNI NLNI VN1 NC PADJ1 PADJ2 ENRFOSC RXI NRXI GADJ1 GADJ2 CE VP3 SCL SDA VN3 M_CLK1 M_CLK2
33 32 31 30 29 28 27 26 25 24 23
Figure 9. Application Board Schematic Diagram
ANT +B VP2a L9 2.2nH VP2b
12 12 12 13 14 15 16 17 18 19 20 21 22
Suggested minimum differential RLoad on RXI and NRXI output 3K
R6 4.7K R7 4.7K VCC C20 10nF C19 8pF R8 1K VCC C21 10nF CLK2 D3 HVC355B R9 0 R10 390 C23 T_LOCK CLK1 C26 Y1 C28 C27 150nF CRYSTAL VCC C31 8pF L10 2.2nH C32 1nF D4 HVC355B R11 1K C24 15nF
C17
C18
10n
100p
VCC
C22 100pF
VCC
C25 100pF
VCC
C30 100pF
VCC
C33 100pF
VCC
C34 100pF
STA001
17/20
STA001
Application note: the crystal oscillator must have the following features:
Symbol Parameter Test Condition Min. Typ. Max. Unit
CRYSTAL OSCILLATOR (T = 25, VP-VN = 3V) f xtal1 f xtal2 Pn VDC Quartz frequency Quartz frequency Phase noise XTAL1, XTAL2 common mode DC voltage - Resonance mode: series - Using a 14.72 - Resonance mode: series - using a 14.725 quartz f = 1 KHz XOSEL high VP-1.1 14.72 14.725 -120 VP-0.9 -118 VP-0.7 MHz MHz
dBc/Hz
V
18/20
STA001
DIM. MIN. A A1 A2 B C D D1 D3 e E E1 E3 L L1 K 0.45 0.05 1.35 0.30 0.09
mm TYP. MAX. 1.60 0.15 1.40 0.37 1.45 0.45 0.20 12.00 10.00 8.00 0.80 12.00 10.00 8.00 0.60 1.00 0.75 0.018 0.002 0.053 0.012 0.004 MIN.
inch TYP. MAX. 0.063 0.006 0.055 0.014 0.057 0.018 0.008 0.472 0.394 0.315 0.031 0.472 0.394 0.315 0.024 0.039 0.030
OUTLINE AND MECHANICAL DATA
TQFP44 (10 x 10)
0(min.), 3.5(typ.), 7(max.)
D D1 A1
33 34 23 22
0.10mm .004 Seating Plane
A A2
E1
B
44 1 11
12
E
B
e
L
C
K
TQFP4410
19/20
STA001
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in lif e support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics 2002 STMicroelectronics - All Rights Reserved STMicroelectronics GROUP OF COMPANIES Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom - United States. http:/ /www.st.com
20/20


▲Up To Search▲   

 
Price & Availability of STA001

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X